
RESEARCH PAPERS

Acta Cryst. (1999). A55, 1±13

Nonsymmetrical X-ray diffraction in a perfect rectangular t ��� l crystal. Extinction and
absorption

Gunnar Thorkildsen* and Helge B. Larsen

Department of Mathematics and Natural Science, Stavanger College, Ullandhaug, 4004 Stavanger, Norway.
E-mail: gunnar.thorkildsen@tn.his.no

(Received 31 January 1998; accepted 3 April 1998 )

Abstract

A theoretical investigation of diffraction in a rectangular
t � l crystal for nonsymmetrical coplanar scattering has
been undertaken. The asymmetry in the scattering
geometry, measured by an angle , causes different
weights for the mixed Laue±Bragg contributions to the
integrated power. Primary extinction and ordinary
absorption are only moderately affected when the value
of the geometrical parameter � � �t=l� tan �oh < 1, �oh

being the Bragg angle. For increasing values of � and 
the surface integration set-up for the Laue and Bragg
regions is extensively changed, leading to pronounced
effects. Analytical results for the normal absorption
factor are presented.

1. Introduction

In a series of papers, we have addressed the topic of
dynamical two-beam diffraction in ®nite perfect crystals.
Both cylindrical and spherical (Thorkildsen & Larsen,
1998a,b) and parallelepipedal crystals (Thorkildsen &
Larsen, 1998c) have been considered. For the latter case,
hereafter denoted TL98c, a symmetrical scattering
situation was adopted. In the present treatment, we seek
to extend the formalism to comprise nonsymmetrical
scattering conditions.

The principal mathematical approach, the boundary-
value Green-function technique for solving the Takagi±
Taupin equations (Takagi, 1962, 1969; Taupin, 1964), has
been thoroughly outlined in the previous papers. This
work gives the changes in the region geometry, the
Green functions and the integration set-up caused by
the diffraction asymmetry. The effect of the asymmetry
on primary extinction and absorption is outlined. We
only consider a coplanar scattering situation, i.e. the
surface normals are parallel to the diffraction plane.

Standard treatment of nonsymmetrical diffraction in
semi-in®nite crystal plates, based on the fundamental
theory of diffraction, is for instance found in chapter 4 in
the book of Pinsker (1978). An extensive treatment on
the subject, with particular emphasis on integrated
re¯ectivity in the Bragg case, is due to Wilkins (1978,

1981). The surface integration approach that we use
allows us to handle in principle any t � l cross section
and corresponding allowed asymmetry. We have to point
out, however, that the effects arising from specular
re¯ections in the extreme asymmetrical limits are not
covered by the present analysis. For an exact treatment
in such a situation, the standard dynamical theory is to
be modi®ed (Afanasev & Melkonyan, 1983; Hung &
Chang, 1989; HolyÂ, 1996).

2. Theory

2.1. General

In TL98c, it is shown that the generalized extinction
factor, y, and the normal absorption factor, A, for
symmetrical scattering in a perfect t � l crystal can be
expressed by²

y � �1=2��P
s

P
m�m0��;s�

R
M��;m;s�

dy
R

S�y;�;m;s�
dx

� jGh��o;�hjm; rs�j2 exp�ÿ�0��o ��h�� �1�
and

A � �1=2��P
s

P
m�m0

0
��;s�

R
M��;m;s�

dy
R

S�y;�;m;s�
dx

� exp�ÿ�0��o ��h��: �2�
These results are derived from the Takagi±Taupin
equations (Takagi, 1962, 1969; Taupin, 1964):

@ ~Do=@so � i�oh
~Dh �3�

@ ~Dh=@sh � i�ho
~Do �4�

using the point-source concept (Becker, 1977) and the
Riemann±Green method (Sommerfeld, 1949). The
entrance and exit surfaces are classi®ed according to the
crystal faces (A, B, C, D) and s labels the different
combinations of positions for source (S) and exit (M)
points. m covers the actual regions³ at the exit for the

² In this work, we will not address anomalous scattering.
³ In the case of normal absorption, this means only those regions that
have a zeroth-order term (� 1) in the ®eld expansion.
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2 NONSYMMETRICAL X-RAY DIFFRACTION

Bragg and Laue families (r), cf. Figs. 1±4. �o and �h are
the coordinates of the exit point relative to the source
measured in a local coordinate system �so; sh� with origin
at S. The surface integrations are performed using sets
of convenient variables �x; y�. The geometrical quantity
� is de®ned by

� � �t=l� tan �oh; �5�
where �oh is the Bragg angle. Furthermore,�0 � �` with
� the linear absorption coef®cient. ` is the characteristic
length parameter l=�2 sin �oh�. The coupling strength,
�pq, is proportional to the Fourier expansion coef®cient
of the dielectric susceptibilty,² �pq � ÿ�K�pÿqC. The
families of functions fi�hoGh�so; shjm; r�g are the
boundary-value Green functions, i.e. the solution of the
Takagi±Taupin equations for the diffracted ®eld using
the boundary condition³

~Do�S� � ��sh�: �6�
The above concept is readily generalized to the case of
nonsymmetrical scattering, which is parametrized using
the asymmetry angle , cf. x2.2 and Fig. 1.

We have to search for:
(i) The Green functions: Gh�so; shj�.
(a) As a series:

Gh�so; shj� �
P1
n�0

�ÿu�nG
�n�
h �so; shj�:

This approach focuses on the events of scattering±
rescattering. It gives analytical results for the normal
absorption factor and for the coef®cients in a series for
the extinction factor. The series found are slowly
convergent, and the computational labour to obtain
higher-order terms soon increases beyond practical
limits. The expansion parameter u is de®ned by
u � �oh�ho`

2 and its absolute value§ juj � �`=�oh�2, with
�oh � 1=�j�oh�hoj�1=2 being an extinction length.

(b) In closed forms: these are obtained by applying
the results of Uragami (1971). It then becomes possible
to perform extensive numerical calculations.

(ii) The integration structure:R
M��

dy
R

S��
dx:

In this work, we stress the changes owing to the
introduction of the asymmetry angle  compared with
the formalism covered in TL98c.

2.2. Geometry

The deviation from a symmetrical scattering condi-
tion is measured by the angle  as shown in Fig. 1. Since
we keep A and B as the entrance surfaces, the angle 
must satisfy the conditions

if 0 � �oh � �=4 then ÿ �oh �  � �oh �7�
if �=4 � �oh � �=2 then �oh ÿ �=2 �  � �=2ÿ �oh:

�8�

In Fig. 2, we have shown the coordinate systems used in
this calculation. The relations between the coordinates
are explored in Appendix A.

In the subsequent treatment, we will use the de®ni-
tions}

�� � sin �oh=sin��oh � � �9�
�� � cos �oh=cos��oh � �: �10�

The following relations exist between these quantities:

��=�� � �ÿ=�ÿ � 2���ÿ �11�
��=�� � �ÿ=�ÿ � 2���ÿ: �12�

All lengths will be measured in the characteristic length
`. Thus the area of the rectangular diffraction plane
becomes tl � 2�`2 sin 2�oh.

The Bragg and Laue families of regions are shown in
Figs. 3 and 4. The expressions for �o, �h and
c � 2r1�S�=l in the chosen coordinate representations,
cf. Appendix A, are summarized in Table 1. Some of the
more technical details that are introduced simplify the
construction of Mathematica²² algorithms used for the
calculations. The relations given cover the case of posi-
tive values of . The change to negative values of this
parameter can be accomplished by an interchange of the
� indices.

Table 1. Dimensionless coordinates for a point M on an exit surface relative to a source point S

Surfaces �o �h c

A±A ���=�ÿ�x x ±

A±D ���=�ÿ�x� 2���ÿy x ±

B±A 2�ÿ�� yÿ ���=�ÿ�x x 2�� xÿ 2��ÿ��=���y
B±D 2��� ÿ ���=�ÿ�x x 2�� x� 2�ÿyÿ 2���=����

² All symbols have their standard interpretation.
³ � denotes the Dirac delta function.
§ u is in general a complex quantity owing to the effect of resonance
scattering. That aspect is however not explored in this paper, cf. TL98c.

} Compared with the notation of Authier (1996), we have
��=�ÿ � jhj=o in re¯ection geometry and ��=�ÿ � h=o in
transmission geometry, o � cos�n; so� and h � cos�n; sh� with n
being the inward drawn normal vector to the actual crystal surface.
²² Mathematica is the trademark of Wolfram Research Inc.,
Champaign, IL 61820±7237, USA.
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2.3. Field solutions

2.3.1. Series expansion. The series-expansion coef®-
cients for the boundary-value Green functions are given
by a set of coupled recurrence relations, cf. equations
(22) and (23) of TL98c. The integral operators Lho and
Loh will depend on the degree of asymmetry and are
given in Tables 2 and 3. Using the boundary conditions
introduced in TL98c, it is straightforward to implement
this procedure in Mathematica to calculate the coef®-
cients fG�n�h g to any practical order.

2.3.2. Closed forms. The boundary-value Green
functions in each region can be expressed by recurrence
relations too, one for the Laue family, another one for
the Bragg family. The two sets of recurrence relations
are identical to those of the symmetrical case and are
given in equations (24)±(28) of TL98c.

The following de®nitions of functions apply to the
nonsymmetrical case:

Gh�so; shj1; L� � J0�2�usosh�1=2� �13�
Gh�so; shj1; B� � J0�2�usosh�1=2� � ���=�ÿ��sh=so�

� J2�2�usosh�1=2� �14�

w�so; shj6p� 2; L�

� �ÿ1�p ��
�ÿ

sh ÿ �2p� c��ÿ
so � �2p� c���

� �p�1

� J2p�2

ÿ
2fu�so � �2p� c�����sh ÿ �2p� c��ÿ�g1=2

�
�15�

w�so; shj6p� 3; L�

� �ÿ1�p�1 �ÿ
��

so ÿ ��2p� 2� ÿ c���
sh � ��2p� 2� ÿ c��ÿ

� �p

� J2p

�
2
ÿ
ufso ÿ ��2p� 2� ÿ c���g

� fsh � ��2p� 2� ÿ c��ÿg
�1=2� �16�

w�so; shj6p� 5; L�

� �ÿ1�p�1 ��
�ÿ

sh ÿ �2p� 2��ÿ
so � �2p� 2���

� �p�1

� J2p�2

ÿ
2fu�so � �2p� 2�����sh ÿ �2p� 2��ÿ�g1=2

�
�17�

Fig. 2. Coordinate systems used. �r0; r1� with origin at the corner O are
global coordinates, while �so; sh� with origin at the actual source
point, S, on the A or B surface are local coordinates.

Fig. 1. Crystal dimensions and surface labels. Entrance surfaces are A
and B, exit surfaces A and D. The angle between so and sh is 2�oh.
The asymmetry angle  is measured with respect to the inward
normal to the B surface. The ®gure shows the case of positive .

Fig. 3. Region structure when the source S is located on the surface A.
All coordinates are measured in the characteristic length `.

Table 2. De®ning integral operators for the Bragg family,
r � B, p � 0; 1; . . .

Region Loh Lho

m � 2p� 1
R so

���=�ÿ�sh
ds0o

R sh

2p�ÿ
ds0h

m � 2p� 2
R so

2�p�1��� ds0o
R sh

��ÿ=���soÿ2�ÿ
ds0h
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w�so; shj6p� 6; L�

� �ÿ1�p�1 �ÿ
��

so ÿ �2p� 2���
sh � �2p� 2��ÿ

� �p�1

� J2p�2

ÿ
2fu�so ÿ �2p� 2�����sh � �2p� 2��ÿ�g1=2

�
�18�

w�so; shj2p� 1; B�

� �ÿ1�p ��
�ÿ

sh ÿ 2p�ÿ
so � 2p��

� �p�1

� J2p�2

ÿ
2fu�so � 2p����sh ÿ 2p�ÿ�g1=2

�
� �ÿ1�p ��

�ÿ

sh ÿ 2p�ÿ
so � 2p��

� �p

� J2p

ÿ
2fu�so � 2p����sh ÿ 2p�ÿ�g1=2

� �19�

w�so; shj2p� 2; B�

� �ÿ1�p�1 �ÿ
��

so ÿ �2p� 2���
sh � �2p� 2��ÿ

� �p�1

� J2p�2

ÿ
2fu�so ÿ �2p� 2�����sh � �2p� 2��ÿ�g1=2

�
� �ÿ1�p�1 �ÿ

��

so ÿ �2p� 2���
sh � �2p� 2��ÿ

� �p

� J2p

ÿ
2fu�so ÿ �2p� 2�����sh � �2p� 2��ÿ�g1=2

�
:

�20�

2.4. Integration structure

In Appendix B, we have summarized in detail the
relations that are used to deduce the actual structure for
the surface integrations. The integration set-up is not
exactly equivalent to the symmetrical case. As before,
the integration limits depend on the value of �, and we
specify `coarse' intervals in � by the integer q in this case
de®ned by

q � Int��=���=�� � �ÿ=�ÿ��: �21�
It is also necessary to specify subsections within each q
interval. These sections are linked to the value of the
parameter �, � 2 �0; ��=�� � �ÿ=�ÿ�, de®ned by

Fig. 5. Different sections in � as a function of . The ®gure is drawn with
2�oh � 40�.

Fig. 4. Region structure when the source S is located on the surface B.
All coordinates are measured in the characteristic length `. This
implies that c � 2r1�S�=l.

Table 3. De®ning integral operators for the Laue family, r � L, p � 0; 1; . . .

Region p Loh Lho

m � 3p� 1
Odd

R so

����p�1�ÿc� ds0o
R sh

�ÿ��pÿ1��c� ds0h
Even

R so

��p ds0o
R sh

�ÿp ds0h

m � 3p� 2
Odd

R so

���=�ÿ�shÿ��c ds0o
R sh

�ÿ�p�1� ds0h
Even

R so

���=�ÿ�shÿ��c ds0o
R sh

�ÿ�p�c� ds0h

m � 3p� 3
Odd

R so

���p�1� ds0o
R sh

��ÿ=���soÿ�ÿ�2ÿc� ds0h
Even

R so

����p�2�ÿc� ds0o
R sh

��ÿ=���soÿ�ÿ�2ÿc� ds0h
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� � � ÿ q���=�� � �ÿ=�ÿ�:
Using o for labelling, we arrive at the following scheme:²

o � 0

o � 1

o � 2

o � 3

o � 4

0 � �< 1

2���ÿ
1

2���ÿ
� �< ��

��
��
��
� �<�ÿ

�ÿ
�ÿ
�ÿ
� �< ��

��
� �ÿ
�ÿ
ÿ 1

2���ÿ
��
��
� �ÿ
�ÿ
ÿ 1

2���ÿ
� �< ��

��
� �ÿ
�ÿ
:

An example of the division of a given range in � as a
function of the asymmetry angle  is shown in Fig. 5.
Since the � and � parameters depend on �oh, the Bragg
angle becomes a parameter for these kinds of plots. The
section limits are closely linked to the surface integra-
tion structure. The buildup of contributions to the
diffracted ®elds at the exit surfaces is shown in Figs. 6±8.
It is too comprehensive to list the actual integration
setup for every scattering mode. A full account is given
by Thorkildsen & Larsen (1997). In Tables 4 and 5, we
have however included the general results for A±A
scattering and the results for B±D scattering for the
special case q � 0, o � 0; 1. These results are important
for a discussion regarding the limits of Laue and Bragg
scattering for semi-in®nite crystal plates. The two inte-
gration schemes, o � 0 and o � 1, for B±D scattering
give the same result. This is a general feature indepen-
dent of the value of q. It also applies to the sections
o � 3 and o � 4.

The extended `volume' that is used to check the
integration setup is shown in Fig. 9. It has the value

v0 � 2��1� �=4���ÿ�`2 sin 2�oh: �22�

3. Results

In general, the effect of the asymmetry is to reduce both
the value of the extinction factor and the absorption
factor, owing to an increase in the mean path lengths of
the beams through the crystal. The size of the effect

increases with �. All results are invariant with respect to
a change in the sign of , cf. Wilkins (1981).

3.1. Series expansion of the primary extinction factor

The primary extinction factor is expressed by

yp � yp��; �oh; j�� �
P1
n�0

�ÿ1�nfn��; �oh; ��n �23�

with expansion parameter

� � �t=2�oh cos �oh�2: �24�
The contributions to the kinematical term, f0 � 1, as
functions of � are given in Table 6 and are shown in Fig.
10 in the case of 2�oh � 40�. There is a change in the
relative weight of the four different scattering terms.
Generally, the mixed Bragg±Laue scattering terms
become more important with increasing . Furthermore,
we ®nd that

f AÿD
0 �� � f BÿA

0 �ÿ�;
which is obvious owing to symmetry reasons.

The ®rst-order coef®cients, here given for the case of
 � 0, are

Table 4. Relations between exit and entrance surface integration; A±A scattering, region m � 2p� 1, p � 0; 1; . . .

� � �t=l� tan �oh I y xÿ
p���=��� � p��ÿ=�ÿ�; �p� 1����=��� � �p� 1���ÿ=�ÿ�

�
1 �2p��; �=�ÿ�

ÿ
2p�ÿ; ��ÿ=���y

�ÿ�p� 1����=��� � �p� 1���ÿ=�ÿ�;1
�

2a
ÿ
2p��; 2�p� 1���

� ÿ
2p�ÿ; ��ÿ=���y

�
2b

ÿ
2�p� 1���; �=�ÿ

� ÿ
2p�ÿ; 2�p� 1��ÿ

�

Fig. 6. Contributions to the ®eld at the exit surface A. X � ��=��,
Y � �ÿ=�ÿ,  � 0.² This scheme applies to the case  � 0, then ��=�� � �ÿ=�ÿ.



6 NONSYMMETRICAL X-RAY DIFFRACTION

f1 �

4
3 ���ÿ�1ÿ 1

2 ���ÿ��
when 0 � � � ��=��

�2ÿ ���=����1=���2 ÿ 2� �2ÿ ��ÿ=�ÿ���2
6�1=���ÿ ÿ 1��

when ��=�� � � � �ÿ=�ÿ
4
3 ���ÿ�1ÿ 1

2 ���ÿ��=�3

when � � �ÿ=�ÿ

8>>>>>>>><>>>>>>>>:
:

�25�
The coef®cients fn for n � 1; 2; 3 are shown as functions
of � in Fig. 11 for the two cases  � 0� and jj � 15�. It is
found that an asymptotic expression occurs for the
coef®cient fn when

Fig. 8. Contributions to the ®eld at the exit surface D from sources on
the surface B. X � ��=��, Y � �ÿ=�ÿ, Z � 1=2���ÿ,  � 0.

Fig. 9. Extended volume, v0, in the case of nonsymmetrical scattering.
Fig. 7. Contributions to the ®eld at the exit surface D from sources on

the surface A. X � ��=��, Y � �ÿ=�ÿ, Z � 1=�2���ÿ�,  � 0.

Table 5. Relations between exit and entrance surface integration

B±D scattering, region m = 1, sections q = 0, o = 0, 1. In these cases, the surface integration consists of three terms: 1a, 1b and 1c (o = 1).

� � �t=l� tan �oh I y x

�0; 1=2���ÿ� 1a
ÿ
0; ���=���ÿ��

� ÿ
2�ÿ� ÿ 2����2

ÿ=���y; 2�ÿ�
�

1b
ÿ���=���ÿ��; �1=�ÿ� ÿ ��=�ÿ�� �0; 2�ÿ��

1c
ÿ�1=�ÿ� ÿ ��=�ÿ�; �1=�ÿ�� ÿ

0; 2�ÿ�1ÿ �ÿy��
�1=2���ÿ; ��=��� 2a �0; 1=�ÿ ÿ �=�ÿ�

ÿ
2�ÿ� ÿ 2����2

ÿ=���y; 2�ÿ�
�

2b
ÿ
1=�ÿ ÿ �=�ÿ; ���=���ÿ��

� ÿ
2�ÿ� ÿ 2����2

ÿ=���y; 2�ÿ�1ÿ �ÿy��
2c

ÿ���=���ÿ��; 1=�ÿ
� ÿ

0; 2�ÿ�1ÿ �ÿy��
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q � n=2;

q � �nÿ 1�=2;

o � 0

o � 3

n an even number

n an odd number

When absorption is included, i.e. calculating the gener-
alized extinction factor

y � P1
n�0

�ÿ1�nfn��; �oh; �0; ��n;

we ®nd that the asymptotic level of fn is reached for

q � n� 1; o � 0:

Then, by increasing �, no contributions to that particular
scattering order is added to the diffracted ®eld at the
exit.

Examination of the contribution to the expansion
coef®cients from A±A scattering in the limit �!1
gives the series for the primary extinction in the Bragg
limit for a semi-in®nite crystal:

yp � 1ÿ 1
3 �B � 2

15 �
2
B ÿ 17

315 �
3
B � . . .

� tanh��B�1=2=��B�1=2 �26�
with

�B � 4���ÿ�=�
2 � �l=�oh�2�sin��oh � � sin��oh ÿ ��ÿ1:

�27�
In the same manner, examination of the B±D scattering
terms in the limit �! 0 gives the Laue limit for the
primary extinction in a semi-in®nite crystal:²

yp � 1ÿ 1
3 �L � 1

20 �
2
L ÿ 1

252 �
3
L � . . .

� �1=��L�1=2�P
n

J2n�1�2��L�1=2�

� 1F2� 1
2 ; 1; 3

2 ;ÿ�L� �28�
with

�L � 4���ÿ� � �t=�oh�2�cos��oh � � cos��oh ÿ ��ÿ1:

�29�

3.2. Normal absorption factor

Analytical expressions for the absorption factor
are obtained by using equation (2). Different ex-

pressions apply to the � ranges: 0 � � � ��=��,
��=�� � � � �ÿ=�ÿ, �ÿ=�ÿ � � � ��=�� � �ÿ=�ÿ and
� � ��=�� � �ÿ=�ÿ. They are included in Appendix C.

Fig. 10. Buildup of the kinematical level from the various scattering
modes. (a)  � 0�, (b)  � 5�, (c)  � ÿ15�. 2�oh � 40�. The
reference curves in (a) are independent of 2�oh. The B±A and A±D
curves are interchanged when  changes sign.

Table 6. Analytical expressions for the contributions to f0 from the various scattering modes in different sections of �,
 � 0

Scattering � � ��=�� ��=�� � � � �ÿ=�ÿ �ÿ=�ÿ � � � ��=�� � �ÿ=�ÿ � � ��=�� � �ÿ=�ÿ
A±A �1=4���ÿ�� �1=4���ÿ�� �1=4���ÿ�� 1ÿ ���ÿ�1=��
B±A ��ÿ=4�2

ÿ���� ��ÿ=4�2
ÿ���� 1ÿ ��ÿ=2�ÿ��1=�� ÿ �1=4���ÿ�� ���=2����1=��

A±D ���=4�2
��ÿ�� 1ÿ ���=2����1=�� ÿ �1=4���ÿ�� 1ÿ ���=2����1=�� ÿ �1=4���ÿ�� ��ÿ=2�ÿ��1=��

B±D 1ÿ ����ÿ ÿ 1=4���ÿ�� ���=2����1=�� ÿ ��ÿ=4�2
ÿ���� ÿ1� ���ÿ�1=�� � �1=4���ÿ�� 0

² J denotes a Bessel function, F a generalized hypergeometric
function.
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In Fig. 12, we have shown the range of values for the
normal absorption factor obtained by varying ,
jj 2 �0; 20��. In the ®gure, 2�oh � 40� and the absorp-
tion factor is plotted against � for the cases
�0 � f0:1; 0:5g. Three  pro®les are shown for �0 � 0:5

in Fig. 13. We observe that the effect of varying  is
almost negligible when � � 1 and �0

<� 0:1.
The normal absorption factor in the Laue limit, AL,

for a semi-in®nite crystal, is obtained from the B±D
scattering contribution I � 1b, region m � 1, in the limit
�! 0, cf. Table 5:

AL �
exp�ÿ2���0�� ÿ exp�ÿ2�ÿ�0��

2��ÿ ÿ ����0�
: �30�

Similarly, the Bragg limit, AB, results from an analysis of
the A±A scattering contribution to absorption in the
limit �!1. This corresponds to the term I � 2a of
Table 4 with m � 1 �p � 0�.

Fig. 11. Extinction coef®cients f1; f2; f3 as functions of �. 2�oh � 40�.
Solid lines: jj � 15�. Dashed lines give the reference at  � 0�.

Fig. 13. Variation of the normal absorption factor with . 2�oh � 40�,
�0 � 0:5. (a) � � 1, (b) � � 2, (c) � � 5.

Fig. 12. Range of values for the normal absorption factor. 2�oh � 40�

and jj 2 �0; 20��. (a) �0 � 0:1, (b) �0 � 0:5.

Fig. 14. Range of values for the primary extinction factor as a function
of t=�oh. (a) t=l � 0:25, (b) t=l � 1, (c) t=l � 4. 2�oh � 30�;
jj 2 �0; 15��.
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AB �
1ÿ exp�ÿ2��� � �ÿ��0�

2��� � �ÿ��0

: �31�

These results are in agreement with those given by
Maslen (1995).

3.3. Numerical results for the primary and generalized
extinction factor

In Fig. 14, we show the range of primary extinction
factors spanned by varying the asymmetry angle
jj 2 �0; 15��. In the ®gures 2�oh � 30� and the extinc-
tion factor is plotted against t=�oh for the
cases t=l � f0:25; 1; 4g. The results are obtained by
performing the surface integrations numerically using
the closed expressions for the boundary-value Green
functions. We observe that the effect of increasing jj
becomes more pronounced for larger values of t=l. Fig.
15 gives the actual  pro®les for the three cases when
t=�oh � 2.

In Fig. 16, we have shown a result for the generalized
extinction factor when normal absorption is included in
the calculation. Here t=l � 4, 2�oh � 40�, �0 � 0:2 and
jj 2 �0; 20��.

4. Conclusions

The case of nonsymmetrical scattering in a rectangular
t � l crystal adds no topological changes to the Laue and
Bragg region geometry and can be dealt with using the
same approach as for the symmetrical case. The addi-
tional degree of freedom added to the problem is
primarily a geometrical one leading to a more complex
integration set-up.

The effect of the asymmetry on both extinction and
absorption increases with the values of � and  since the
geometrical changes of the surface integrations then
become more pronounced.

Combining the approach using series expansions with
numerical calculations based on the work of Uragami

(1971) extends the range of applicability of the method.
In the limit of a semi-in®nite crystal plate, the results
from fundamental dynamical theory are reproduced
(Zachariasen, 1945).

A number of details had to be omitted in this
presentation, they are fully covered in a report on two-
beam diffraction in perfect crystals (Thorkildsen &
Larsen, 1997), which is available from the authors on
request.

APPENDIX A

Here we explore some geometrical aspects. To simplify
the reading, we have not scaled the geometrical quan-
tities to the characteristic length `.

A1. Coordinate systems

With the origin of the local coordinate system on the
entrance surface A, the relation between the local
�so; sh� and the global �r0; r1� coordinates for a general
point within the crystal is given by

so �
sin��oh ÿ �

sin 2�oh

�r0 ÿ r0�S�� �
cos��oh ÿ �

sin 2�oh

r1

sh �
sin��oh � �

sin 2�oh

�r0 ÿ r0�S�� ÿ
cos��oh � �

sin 2�oh

r1:

�32�

With the origin of the local coordinate system on the
entrance surface B, the relation between the local and
global coordinates for a general point is given by

so �
sin��oh ÿ �

sin 2�oh

r0 �
cos��oh ÿ �

sin 2�oh

�r1 ÿ r1�S��

sh �
sin��oh � �

sin 2�oh

r0 ÿ
cos��oh � �

sin 2�oh

�r1 ÿ r1�S��
: �33�

Fig. 15. Variation of the primary extinction factor with . 2�oh � 30�,
t=�oh � 2. (a) t=l � 4, (b) t=l � 1, (c) t=l � 0:25.

Fig. 16. Range of values for the generalized extinction factor as a
function of t=�oh, t=l � 4, 2�oh � 40�, �0 � 0:2, jj 2 �0; 20��.
Upper limit corresponds to  � 0�, lower limit to jj � 20�. Since
the crystal has a nonvanishing size, the limit t=�oh ! 0 corresponds
to �oh !1.
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A2. Coordinates for an exit point M

It is convenient to represent an exit point M in the
�r0; r1� coordinate system. On exit surface A,
r0�M� 2 �0; t� and r1�M� � 0, while, on exit surface D,
r0�M� � t and r1�M� 2 �0; l�. The coordinates for an exit
point with respect to the appropriate source point, i.e.
�o and �h, are given in Table 7.

A3. De®nition of new variables

The surface integrations are simpli®ed by introducing
a set of variables, �x; y�, with somewhat different de®-
nitions according to the actual combination of entrance
and exit surfaces. The de®nitions are given in Table 8.

APPENDIX B
Deducing the integration structure

The coordinate limits for a general point, expressed in
�so; sh�, for a given region, m, with source point on A and

B, respectively, are given in Tables 9 and 10. Combining
these restrictions with the expressions for �o and �h in
Table 7 gives the sets of inequalities listed in Tables
11±14. In addition, the coordinates of the exit points,
expressed in �r0; r1�, must satisfy the conditions:
r0 2 �0; t� and r1 2 �0; l�. The integration structure, i.e.
the range of possible positions for the source S giving
rise to a diffracted ®eld at the exit point M within the
region m, together with the range of the possible posi-
tions for M, are deduced from these inequalities.

APPENDIX C
Expressions for the normal absorption factor

The normal absorption factors for  � 0 in the four
actual � intervals are given here. There is an apparent
asymmetry in the � indices for the range
��=�� � � � �ÿ=�ÿ, i.e. for o � 2. This is connected to a
change in the integration setup for this section owing to
the interchange of ��=�� and �ÿ=�ÿ when  changes

Table 7. Coordinates for a point M on an exit surface in relation to a source point S

Surfaces �o �h

A±A �sin��oh ÿ �=sin 2�oh��ro�M� ÿ ro�S�� �sin��oh � �=sin 2�oh��ro�M� ÿ ro�S��
A±D

h sin��oh ÿ �
sin 2�oh

i
�t ÿ ro�S�� �

h cos��oh ÿ �
sin 2�oh

i
r1�M�

h sin��oh � �
sin 2�oh

i
�t ÿ ro�S�� ÿ

h cos��oh � �
sin 2�oh

i
r1�M�

B±A
h sin��oh ÿ �

sin 2�oh

i
ro�M� ÿ

h cos��oh ÿ �
sin 2�oh

i
r1�S�

h sin��oh � �
sin 2�oh

i
ro�M� �

h cos��oh � �
sin 2�oh

i
r1�S�

B±D
h sin��oh ÿ �

sin 2�oh

i
t �

h cos��oh ÿ �
sin 2�oh

i
��r1�M� ÿ r1�S��

h sin��oh � �
sin 2�oh

i
t ÿ

h cos��oh � �
sin 2�oh

i
�r1�M� ÿ r1�S��

Table 8. Change of variables ± de®nitions

Surfaces Entrance Exit

A±A r0�S� � r0�M� ÿ 2�� cos �oh x r0�M� � 2�ÿ cos �oh y
A±D r0�S� � t ÿ ���=����r1�M�=tan �oh� ÿ 2�� cos �oh x r1�M� � 2�ÿ sin �oh y
B±A r1�S� � 2�� sin �oh xÿ ���=�ÿ�r0�M� tan �oh r0�M� � 2�ÿ cos �oh y
B±D r1�S� � 2�� sin �oh x� r1�M� ÿ ���=���t tan �oh r1�M� � 2�ÿ sin �oh y

Table 9. Coordinate limits for the different regions in the crystal with source point S on entrance surface A,
p � 0, 1, . . .

Region Limits in so Limits in sh

m � 2p� 1
ÿ
2p���l=2 sin �oh�; 2�p� 1����l=2 sin �oh�

� ÿ
2p�ÿ�l=2 sin �oh�; 2�p� 1��ÿ�l=2 sin �oh�

�
m � 2p� 2

ÿ
2�p� 1����l=2 sin �oh�; 2�p� 2����l=2 sin �oh�

� ÿ
2p�ÿ�l=2 sin �oh�; 2�p� 1��ÿ�l=2 sin �oh�

�

Table 10. Coordinate limits for the different regions in the crystal with source point S on entrance surface B,
p � 0, 1, . . .

Region p Limits in so Limits in sh

m � 3p� 1 Odd ��
ÿ�p� 1��l=2 sin �oh� ÿ �r1�S�=sin �oh�; �p� 1��l=2 sin �oh�

�
�ÿ
ÿ�pÿ 1��l=2 sin �oh� � �r1�S�=sin �oh�; �p� 1��l=2 sin �oh�

�
Even ��

ÿ
p�l=2 sin �oh�; �p� 2��l=2 sin �oh� ÿ �r1�S�=sin �oh�

�
�ÿ
ÿ
p�l=2 sin �oh�; p�l=2 sin �oh� � �r1�S�=sin �oh�

�
m � 3p� 2 Odd ��

ÿ�p� 1��l=2 sin �oh� ÿ �r1�S�=sin �oh�; �p� 1��l=2 sin �oh�
�

�ÿ
ÿ�p� 1��l=2 sin �oh�; �p� 1��l=2 sin �oh� � �r1�S�=sin �oh�

�
Even ��

ÿ
p�l=2 sin �oh�; �p� 2��l=2 sin �oh� ÿ �r1�S�=sin �oh�

�
�ÿ
ÿ
p�l=2 sin �oh� � �r1�S�=sin �oh�; �p� 2��l=2 sin �oh�

�
m � 3p� 3 Odd ��

ÿ�p� 1��l=2 sin �oh�; �p� 3��l=2 sin �oh� ÿ �r1�S�=sin �oh�
�

�ÿ
ÿ�pÿ 1��l=2 sin �oh� � �r1�S�=sin �oh�; �p� 1��l=2 sin �oh�

�
Even ��

ÿ�p� 2��l=2 sin �oh� ÿ �r1�S�=sin �oh�; �p� 2��l=2 sin �oh�
�

�ÿ
ÿ
p�l=2 sin �oh�; p�l=2 sin �oh� � �r1�S�=sin �oh�

�
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sign. However, as pointed out in the main text,
A�ÿjj� � A�jj�.

(i) � � ��=��:

A � 1

2��0

1

��� � �ÿ�
�

�
� ��

2�ÿ����� � �ÿ�
1

�0

� �ÿ
2���ÿ��� � �ÿ�

1

�0

ÿ 1

��� ÿ �ÿ�
exp�ÿ2���0��

� 1

��� ÿ �ÿ�
exp�ÿ2�ÿ�0��

ÿ 1

2�ÿ��� ÿ �ÿ�
1

�0

exp�ÿ2�ÿ�0��

� 1

2����� ÿ �ÿ�
1

�0

exp�ÿ2���0��

� ��
����� ÿ �ÿ�

� exp�ÿ2���0��

ÿ �ÿ
�ÿ��� ÿ �ÿ�

� exp�ÿ2�ÿ�0��

� ��
2����� ÿ �ÿ�2

1

�0

exp�ÿ2���0��

� �ÿ
2�ÿ��� ÿ �ÿ�2

1

�0

exp�ÿ2�ÿ�0��

ÿ ���ÿ
��� � �ÿ�2

1

�0

1ÿ exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �� �
� ���ÿ
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ �ÿ��
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ ���ÿ
��� ÿ �ÿ�2

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� ��
�34�

(ii) ��=�� � � � �ÿ=�ÿ:

A � 1

2��0

1

��� � �ÿ�
�

�
� ��

2�ÿ����� � �ÿ�
1

�0

� �ÿ
2���ÿ��� � �ÿ�

1

�0

� 1

��� ÿ �ÿ�
exp�ÿ2�ÿ�0��

ÿ �ÿ
�ÿ��� ÿ �ÿ�

� exp�ÿ2�ÿ�0��

ÿ 1

2�ÿ��� ÿ �ÿ�
1

�0

exp�ÿ2�ÿ�0��

� �ÿ
2�ÿ��� ÿ �ÿ�2

1

�0

exp�ÿ2�ÿ�0��

ÿ 1

2���ÿ

1

�0

exp�ÿ2���0�

ÿ ���ÿ
��� � �ÿ�2

1

�0

1ÿ exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �� �
� ���ÿ
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ �ÿ��
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ ���ÿ
��� ÿ �ÿ�2

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
� ��

2���ÿ��� ÿ �ÿ�
1

�0

� exp ÿ2�0

��
��
��� ÿ �ÿ� � �ÿ�

� �� �
� ��

2����� ÿ �ÿ�2
1

�0

� exp ÿ2�0

��
��
��� ÿ �ÿ� � �ÿ�

� �� ��
�35�

Table 11. Restriction on coordinates for entrance and exit points, A±A scattering

0 � r0�S� � t and 0 � r0�M� � t.

Region Inequalities

m � 2p� 1 r0�M� ÿ 2�p� 1�����ÿl=tan �oh� � r0�S� � r0�M� ÿ 2p����ÿl=tan �oh�

Table 12. Restriction on coordinates for entrance and exit points, A±D scattering

0 � r0�S� � t and 0 � r1�M� � l.

Region Inequalities

m � 2p� 1 t � ��ÿ=�ÿ��r1�M�=tan �oh� ÿ 2�p� 1�����ÿl=tan �oh� � r0�S� � t � ��ÿ=�ÿ��r1�M�=tan �oh� ÿ 2p����ÿl=tan �oh�
t ÿ ���=����r1�M�=tan �oh� ÿ 2�p� 1�����ÿl=tan �oh� � r0�S� � t ÿ ���=����r1�M�=tan �oh� ÿ 2p����ÿl=tan �oh�

m � 2p� 2 t � ��ÿ=�ÿ��r1�M�=tan �oh� ÿ 2�p� 2�����ÿl=tan �oh� � r0�S� � t � ��ÿ=�ÿ��r1�M�=tan �oh� ÿ 2�p� 1�����ÿl=tan �oh�
t ÿ ���=����r1�M�=tan �oh� ÿ 2�p� 1�����ÿl=tan �oh� � r0�S� � t ÿ ���=����r1�M�=tan �oh� ÿ 2p����ÿl=tan �oh�
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(iii) �ÿ=�ÿ � � � ��=�� � �ÿ=�ÿ:

A � 1

2��0

1

��� � �ÿ�
�

�
� ��

2�ÿ����� � �ÿ�
1

�0

� �ÿ
2���ÿ��� � �ÿ�

1

�0

ÿ 1

2�ÿ��

1

�0

exp�ÿ2�ÿ�0�

ÿ 1

2���ÿ

1

�0

exp�ÿ2���0�

ÿ ���ÿ
��� � �ÿ�2

1

�0

1ÿ exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �� �
� ���ÿ
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ �ÿ��
��� � �ÿ���� ÿ �ÿ�

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ ���ÿ
��� ÿ �ÿ�2

1

�0

exp ÿ 1

��
� 1

�ÿ

� �
�0�

� �
ÿ �ÿ

2�ÿ����� ÿ �ÿ�
1

�0

� exp ÿ2�0

�ÿ
�ÿ
��ÿ ÿ ��� � ���

� �� �
� ��

2���ÿ��� ÿ �ÿ�
1

�0

� exp ÿ2�0

��
��
��� ÿ �ÿ� � �ÿ�

� �� �
� ��

2����� ÿ �ÿ�2
1

�0

� exp ÿ2�0

��
��
��� ÿ �ÿ� � �ÿ�

� �� �
� �ÿ

2�ÿ��� ÿ �ÿ�2
1

�0

� exp ÿ2�0

�ÿ
�ÿ
��ÿ ÿ ��� � ���

� �� ��
�36�

(iv) � � ��=�� � �ÿ=�ÿ:

A � 1

2��0

��
2�ÿ����� � �ÿ�

1

�0

�
� �ÿ

2���ÿ��� � �ÿ�
1

�0

ÿ 1

2���ÿ

1

�0

exp�ÿ2���0�

ÿ 1

2�ÿ��

1

�0

exp�ÿ2�ÿ�0�

� 1

��� � �ÿ�
�f1ÿ exp�ÿ2��� � �ÿ��0�g

� 2���ÿ
��� � �ÿ�

exp�ÿ2��� � �ÿ��0�

ÿ ���ÿ
��� � �ÿ�2

1

�0

f1ÿ exp�ÿ2��� � �ÿ��0�g

� 1

2��� � �ÿ���
1

�0

exp�ÿ2�0��� � �ÿ��

� 1

2��� � �ÿ��ÿ
1

�0

exp�ÿ2�0��� � �ÿ��
�
: �37�
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���ÿ�p� 1�l � t tan �oh ÿ ���=����r1�M� ÿ r1�S�� � ���ÿ��p� 1�l � 2r1�S��

Even ���ÿpl � t tan �oh � ��ÿ=�ÿ��r1�M� ÿ r1�S�� � ���ÿ��p� 2�l ÿ 2r1�S��
���ÿ�pl � 2r1�S�� � t tan �oh ÿ ���=����r1�M� ÿ r1�S�� � ���ÿ�p� 2�l

m � 3p� 3 Odd ���ÿ�p� 1�l � t tan �oh � ��ÿ=�ÿ��r1�M� ÿ r1�S�� � ���ÿ��p� 3�l ÿ 2r1�S��
���ÿ��pÿ 1�l � 2r1�S�� � t tan �oh ÿ ���=����r1�M� ÿ r1�S�� � ���ÿ�p� 1�l

Even ���ÿ��p� 2�l ÿ 2r1�S�� � t tan �oh � ��ÿ=�ÿ��r1�M� ÿ r1�S�� � ���ÿ�p� 2�l
���ÿpl � t tan �oh ÿ ���=����r1�M� ÿ r1�S�� � ���ÿ�pl � 2r1�S��


